MakeItFrom.com
Menu (ESC)

CC763S Brass vs. C48600 Brass

Both CC763S brass and C48600 brass are copper alloys. They have a moderately high 92% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 7.3
20 to 25
Poisson's Ratio 0.31
0.31
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 490
280 to 360
Tensile Strength: Yield (Proof), MPa 270
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 190
170
Maximum Temperature: Mechanical, °C 140
120
Melting Completion (Liquidus), °C 870
900
Melting Onset (Solidus), °C 830
890
Specific Heat Capacity, J/kg-K 400
380
Thermal Expansion, µm/m-K 20
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
25
Electrical Conductivity: Equal Weight (Specific), % IACS 32
28

Otherwise Unclassified Properties

Base Metal Price, % relative 24
24
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 49
47
Embodied Water, L/kg 330
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 340
61 to 140
Stiffness to Weight: Axial, points 7.5
7.1
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
9.5 to 12
Strength to Weight: Bending, points 17
12 to 14
Thermal Shock Resistance, points 16
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Arsenic (As), % 0
0.020 to 0.25
Copper (Cu), % 56.5 to 67
59 to 62
Iron (Fe), % 0.5 to 2.0
0
Lead (Pb), % 0 to 1.5
1.0 to 2.5
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 2.5
0
Silicon (Si), % 0 to 1.0
0
Tin (Sn), % 0 to 1.0
0.3 to 1.5
Zinc (Zn), % 18.9 to 41
33.4 to 39.7
Residuals, % 0
0 to 0.4