MakeItFrom.com
Menu (ESC)

CC763S Brass vs. C63600 Bronze

Both CC763S brass and C63600 bronze are copper alloys. They have 65% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is CC763S brass and the bottom bar is C63600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.3
30 to 66
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
42
Tensile Strength: Ultimate (UTS), MPa 490
410 to 540
Tensile Strength: Yield (Proof), MPa 270
150 to 260

Thermal Properties

Latent Heat of Fusion, J/g 190
230
Maximum Temperature: Mechanical, °C 140
210
Melting Completion (Liquidus), °C 870
1030
Melting Onset (Solidus), °C 830
980
Specific Heat Capacity, J/kg-K 400
410
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
12
Electrical Conductivity: Equal Weight (Specific), % IACS 32
13

Otherwise Unclassified Properties

Base Metal Price, % relative 24
30
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.9
2.8
Embodied Energy, MJ/kg 49
45
Embodied Water, L/kg 330
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30
98 to 290
Resilience: Unit (Modulus of Resilience), kJ/m3 340
100 to 300
Stiffness to Weight: Axial, points 7.5
7.3
Stiffness to Weight: Bending, points 20
19
Strength to Weight: Axial, points 17
13 to 18
Strength to Weight: Bending, points 17
14 to 17
Thermal Shock Resistance, points 16
15 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 1.0 to 2.5
3.0 to 4.0
Antimony (Sb), % 0 to 0.080
0
Arsenic (As), % 0
0 to 0.15
Copper (Cu), % 56.5 to 67
93 to 96.3
Iron (Fe), % 0.5 to 2.0
0 to 0.15
Lead (Pb), % 0 to 1.5
0 to 0.050
Manganese (Mn), % 1.0 to 3.5
0
Nickel (Ni), % 0 to 2.5
0 to 0.15
Silicon (Si), % 0 to 1.0
0.7 to 1.3
Tin (Sn), % 0 to 1.0
0 to 0.2
Zinc (Zn), % 18.9 to 41
0 to 0.5
Residuals, % 0
0 to 0.5