MakeItFrom.com
Menu (ESC)

CC764S Brass vs. ASTM A387 Grade 11 Steel

CC764S brass belongs to the copper alloys classification, while ASTM A387 grade 11 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC764S brass and the bottom bar is ASTM A387 grade 11 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
25
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 680
500 to 600
Tensile Strength: Yield (Proof), MPa 290
270 to 350

Thermal Properties

Latent Heat of Fusion, J/g 180
260
Maximum Temperature: Mechanical, °C 130
430
Melting Completion (Liquidus), °C 850
1460
Melting Onset (Solidus), °C 810
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 94
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 36
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.6
Embodied Energy, MJ/kg 49
21
Embodied Water, L/kg 330
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
100 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 390
200 to 320
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
18 to 21
Strength to Weight: Bending, points 22
18 to 20
Thermal Diffusivity, mm2/s 30
11
Thermal Shock Resistance, points 22
15 to 18

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.050 to 0.17
Chromium (Cr), % 0
1.0 to 1.5
Copper (Cu), % 52 to 66
0
Iron (Fe), % 0.5 to 2.5
96.2 to 97.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0.3 to 4.0
0.4 to 0.65
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.1
0.5 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 20.7 to 50.2
0