MakeItFrom.com
Menu (ESC)

CC764S Brass vs. SAE-AISI 1012 Steel

CC764S brass belongs to the copper alloys classification, while SAE-AISI 1012 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC764S brass and the bottom bar is SAE-AISI 1012 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
100 to 110
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 15
21 to 31
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 680
360 to 400
Tensile Strength: Yield (Proof), MPa 290
200 to 330

Thermal Properties

Latent Heat of Fusion, J/g 180
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 850
1470
Melting Onset (Solidus), °C 810
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 94
53
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.9
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 330
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
80 to 93
Resilience: Unit (Modulus of Resilience), kJ/m3 390
110 to 300
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 24
13 to 14
Strength to Weight: Bending, points 22
14 to 15
Thermal Diffusivity, mm2/s 30
14
Thermal Shock Resistance, points 22
11 to 13

Alloy Composition

Aluminum (Al), % 1.0 to 3.0
0
Antimony (Sb), % 0 to 0.050
0
Carbon (C), % 0
0.1 to 0.15
Copper (Cu), % 52 to 66
0
Iron (Fe), % 0.5 to 2.5
99.16 to 99.6
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0.3 to 4.0
0.3 to 0.6
Nickel (Ni), % 0 to 3.0
0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.3
0
Zinc (Zn), % 20.7 to 50.2
0