MakeItFrom.com
Menu (ESC)

CC765S Brass vs. Grade M30C Nickel

CC765S brass belongs to the copper alloys classification, while grade M30C nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is grade M30C nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
160
Elongation at Break, % 21
29
Poisson's Ratio 0.31
0.32
Shear Modulus, GPa 42
61
Tensile Strength: Ultimate (UTS), MPa 540
510
Tensile Strength: Yield (Proof), MPa 220
250

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
900
Melting Completion (Liquidus), °C 860
1290
Melting Onset (Solidus), °C 820
1240
Specific Heat Capacity, J/kg-K 400
430
Thermal Conductivity, W/m-K 91
22
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 34
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 24
60
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 3.0
9.5
Embodied Energy, MJ/kg 51
140
Embodied Water, L/kg 330
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
200
Stiffness to Weight: Axial, points 7.6
10
Stiffness to Weight: Bending, points 20
21
Strength to Weight: Axial, points 19
16
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 28
5.7
Thermal Shock Resistance, points 17
18

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.3
Copper (Cu), % 51 to 65
26 to 33
Iron (Fe), % 0.5 to 2.0
0 to 3.5
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 1.5
Nickel (Ni), % 0 to 6.0
56.6 to 72
Niobium (Nb), % 0
1.0 to 3.0
Phosphorus (P), % 0 to 0.030
0 to 0.030
Silicon (Si), % 0 to 0.1
1.0 to 2.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0