MakeItFrom.com
Menu (ESC)

CC765S Brass vs. S82031 Stainless Steel

CC765S brass belongs to the copper alloys classification, while S82031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is CC765S brass and the bottom bar is S82031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 21
39
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 42
78
Tensile Strength: Ultimate (UTS), MPa 540
780
Tensile Strength: Yield (Proof), MPa 220
570

Thermal Properties

Latent Heat of Fusion, J/g 180
290
Maximum Temperature: Mechanical, °C 140
980
Melting Completion (Liquidus), °C 860
1430
Melting Onset (Solidus), °C 820
1390
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 91
15
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 34
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 24
13
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 3.0
2.8
Embodied Energy, MJ/kg 51
39
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 90
280
Resilience: Unit (Modulus of Resilience), kJ/m3 220
820
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
28
Strength to Weight: Bending, points 18
24
Thermal Diffusivity, mm2/s 28
3.9
Thermal Shock Resistance, points 17
22

Alloy Composition

Aluminum (Al), % 0.5 to 2.5
0
Antimony (Sb), % 0 to 0.080
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 51 to 65
0 to 1.0
Iron (Fe), % 0.5 to 2.0
68 to 78.3
Lead (Pb), % 0 to 0.5
0
Manganese (Mn), % 0.3 to 3.0
0 to 2.5
Molybdenum (Mo), % 0
0.6 to 1.4
Nickel (Ni), % 0 to 6.0
2.0 to 4.0
Nitrogen (N), % 0
0.14 to 0.24
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 1.0
0
Zinc (Zn), % 19.8 to 47.7
0