MakeItFrom.com
Menu (ESC)

CC767S Brass vs. ACI-ASTM CF8 Steel

CC767S brass belongs to the copper alloys classification, while ACI-ASTM CF8 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is ACI-ASTM CF8 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
140
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34
55
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 430
540
Tensile Strength: Yield (Proof), MPa 150
260

Thermal Properties

Latent Heat of Fusion, J/g 180
300
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 840
1420
Melting Onset (Solidus), °C 790
1430
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 36
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
16
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.7
3.1
Embodied Energy, MJ/kg 47
44
Embodied Water, L/kg 330
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
240
Resilience: Unit (Modulus of Resilience), kJ/m3 100
160
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 34
4.3
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
63.8 to 74
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 1.0
8.0 to 11
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.1
0
Zinc (Zn), % 32.8 to 41.9
0