MakeItFrom.com
Menu (ESC)

CC767S Brass vs. AISI 439 Stainless Steel

CC767S brass belongs to the copper alloys classification, while AISI 439 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is CC767S brass and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 86
160
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34
23
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 430
490
Tensile Strength: Yield (Proof), MPa 150
250

Thermal Properties

Latent Heat of Fusion, J/g 180
280
Maximum Temperature: Mechanical, °C 120
890
Melting Completion (Liquidus), °C 840
1510
Melting Onset (Solidus), °C 790
1430
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 110
25
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 36
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.0
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.3
Embodied Energy, MJ/kg 47
34
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
95
Resilience: Unit (Modulus of Resilience), kJ/m3 100
160
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 34
6.7
Thermal Shock Resistance, points 14
16

Alloy Composition

Aluminum (Al), % 0.1 to 0.8
0 to 0.15
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 58 to 64
0
Iron (Fe), % 0 to 0.5
77.1 to 82.8
Lead (Pb), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 1.0
0 to 0.5
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.1
0
Titanium (Ti), % 0
0.2 to 1.1
Zinc (Zn), % 32.8 to 41.9
0