MakeItFrom.com
Menu (ESC)

CR011A Copper vs. C46200 Brass

Both CR011A copper and C46200 brass are copper alloys. They have 64% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CR011A copper and the bottom bar is C46200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
100
Elongation at Break, % 15
17 to 34
Poisson's Ratio 0.34
0.31
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220
370 to 480
Tensile Strength: Yield (Proof), MPa 130
120 to 290

Thermal Properties

Latent Heat of Fusion, J/g 210
170
Maximum Temperature: Mechanical, °C 200
120
Melting Completion (Liquidus), °C 1090
840
Melting Onset (Solidus), °C 1040
800
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 390
110
Thermal Expansion, µm/m-K 17
20

Otherwise Unclassified Properties

Base Metal Price, % relative 32
24
Density, g/cm3 9.0
8.1
Embodied Carbon, kg CO2/kg material 2.6
2.7
Embodied Energy, MJ/kg 42
46
Embodied Water, L/kg 340
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
69 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 76
72 to 400
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.8
13 to 16
Strength to Weight: Bending, points 9.0
14 to 17
Thermal Diffusivity, mm2/s 110
35
Thermal Shock Resistance, points 7.8
12 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.88 to 99.97
62 to 65
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Oxygen (O), % 0 to 0.040
0
Silver (Ag), % 0.030 to 0.050
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
33.3 to 37.5
Residuals, % 0
0 to 0.4