MakeItFrom.com
Menu (ESC)

CR012A Copper vs. C19700 Copper

Both CR012A copper and C19700 copper are copper alloys. They have a very high 98% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CR012A copper and the bottom bar is C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 15
2.4 to 13
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 220
400 to 530
Tensile Strength: Yield (Proof), MPa 130
330 to 520

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1090
1090
Melting Onset (Solidus), °C 1040
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
250
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
86 to 88
Electrical Conductivity: Equal Weight (Specific), % IACS 100
87 to 89

Otherwise Unclassified Properties

Base Metal Price, % relative 33
30
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 42
41
Embodied Water, L/kg 360
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
12 to 49
Resilience: Unit (Modulus of Resilience), kJ/m3 76
460 to 1160
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
12 to 16
Strength to Weight: Bending, points 9.0
14 to 16
Thermal Diffusivity, mm2/s 110
73
Thermal Shock Resistance, points 7.8
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Bismuth (Bi), % 0 to 0.00050
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 99.85 to 99.94
97.4 to 99.59
Iron (Fe), % 0
0.3 to 1.2
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.050
Oxygen (O), % 0 to 0.040
0
Phosphorus (P), % 0
0.1 to 0.4
Silver (Ag), % 0.060 to 0.080
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2