MakeItFrom.com
Menu (ESC)

CR015A Copper vs. C86100 Bronze

Both CR015A copper and C86100 bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 67% of their average alloy composition in common.

For each property being compared, the top bar is CR015A copper and the bottom bar is C86100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
20
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
43
Tensile Strength: Ultimate (UTS), MPa 220
660
Tensile Strength: Yield (Proof), MPa 130
350

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
940
Melting Onset (Solidus), °C 1040
900
Specific Heat Capacity, J/kg-K 390
420
Thermal Conductivity, W/m-K 390
35
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 33
24
Density, g/cm3 9.0
8.0
Embodied Carbon, kg CO2/kg material 2.7
2.9
Embodied Energy, MJ/kg 42
49
Embodied Water, L/kg 360
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
110
Resilience: Unit (Modulus of Resilience), kJ/m3 76
530
Stiffness to Weight: Axial, points 7.2
7.8
Stiffness to Weight: Bending, points 18
20
Strength to Weight: Axial, points 6.8
23
Strength to Weight: Bending, points 9.0
21
Thermal Diffusivity, mm2/s 110
10
Thermal Shock Resistance, points 7.8
21

Alloy Composition

Aluminum (Al), % 0
4.5 to 5.5
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.883 to 99.939
66 to 68
Iron (Fe), % 0
2.0 to 4.0
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0
2.5 to 5.0
Phosphorus (P), % 0.0010 to 0.0070
0
Silver (Ag), % 0.060 to 0.080
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
17.3 to 25