MakeItFrom.com
Menu (ESC)

CR016A Copper vs. Grade CX2MW Nickel

CR016A copper belongs to the copper alloys classification, while grade CX2MW nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is CR016A copper and the bottom bar is grade CX2MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
220
Elongation at Break, % 15
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
84
Tensile Strength: Ultimate (UTS), MPa 230
620
Tensile Strength: Yield (Proof), MPa 140
350

Thermal Properties

Latent Heat of Fusion, J/g 210
330
Maximum Temperature: Mechanical, °C 200
980
Melting Completion (Liquidus), °C 1090
1550
Melting Onset (Solidus), °C 1040
1490
Specific Heat Capacity, J/kg-K 390
430
Thermal Conductivity, W/m-K 390
10
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 98
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 35
65
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.7
12
Embodied Energy, MJ/kg 42
170
Embodied Water, L/kg 390
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
180
Resilience: Unit (Modulus of Resilience), kJ/m3 83
290
Stiffness to Weight: Axial, points 7.2
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 7.1
19
Strength to Weight: Bending, points 9.3
18
Thermal Diffusivity, mm2/s 110
2.7
Thermal Shock Resistance, points 8.1
17

Alloy Composition

Bismuth (Bi), % 0 to 0.00050
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
20 to 22.5
Copper (Cu), % 99.843 to 99.919
0
Iron (Fe), % 0
2.0 to 6.0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
12.5 to 14.5
Nickel (Ni), % 0
51.3 to 63
Phosphorus (P), % 0.0010 to 0.0070
0 to 0.025
Silicon (Si), % 0
0 to 0.8
Silver (Ag), % 0.080 to 0.12
0
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
2.5 to 3.5
Vanadium (V), % 0
0 to 0.35