MakeItFrom.com
Menu (ESC)

CR019A Copper vs. C90500 Gun Metal

Both CR019A copper and C90500 gun metal are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 88% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is CR019A copper and the bottom bar is C90500 gun metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 15
20
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
40
Tensile Strength: Ultimate (UTS), MPa 220
320
Tensile Strength: Yield (Proof), MPa 130
160

Thermal Properties

Latent Heat of Fusion, J/g 210
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 1090
1000
Melting Onset (Solidus), °C 1040
850
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 390
75
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
11
Electrical Conductivity: Equal Weight (Specific), % IACS 100
11

Otherwise Unclassified Properties

Base Metal Price, % relative 35
35
Density, g/cm3 9.0
8.7
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 42
59
Embodied Water, L/kg 390
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 29
54
Resilience: Unit (Modulus of Resilience), kJ/m3 76
110
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 6.8
10
Strength to Weight: Bending, points 9.0
12
Thermal Diffusivity, mm2/s 110
23
Thermal Shock Resistance, points 7.8
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Bismuth (Bi), % 0 to 0.00050
0
Copper (Cu), % 99.874 to 99.92
86 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Silver (Ag), % 0.080 to 0.12
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
9.0 to 11
Zinc (Zn), % 0
1.0 to 3.0
Residuals, % 0
0 to 0.3