MakeItFrom.com
Menu (ESC)

EN-MC21110 Magnesium vs. 8090 Aluminum

EN-MC21110 magnesium belongs to the magnesium alloys classification, while 8090 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN-MC21110 magnesium and the bottom bar is 8090 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
67
Elongation at Break, % 2.8 to 6.7
3.5 to 13
Fatigue Strength, MPa 75 to 78
91 to 140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
25
Tensile Strength: Ultimate (UTS), MPa 200 to 270
340 to 490
Tensile Strength: Yield (Proof), MPa 100 to 120
210 to 420

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 130
190
Melting Completion (Liquidus), °C 600
660
Melting Onset (Solidus), °C 500
600
Specific Heat Capacity, J/kg-K 990
960
Thermal Conductivity, W/m-K 80
95 to 160
Thermal Expansion, µm/m-K 26
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
20
Electrical Conductivity: Equal Weight (Specific), % IACS 61
66

Otherwise Unclassified Properties

Base Metal Price, % relative 12
18
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 23
8.6
Embodied Energy, MJ/kg 160
170
Embodied Water, L/kg 990
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.9 to 14
16 to 41
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 150
340 to 1330
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 33 to 44
34 to 49
Strength to Weight: Bending, points 45 to 54
39 to 50
Thermal Diffusivity, mm2/s 47
36 to 60
Thermal Shock Resistance, points 12 to 16
15 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 7.0 to 8.7
93 to 98.4
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
1.0 to 1.6
Iron (Fe), % 0 to 0.0050
0 to 0.3
Lithium (Li), % 0
2.2 to 2.7
Magnesium (Mg), % 89.6 to 92.6
0.6 to 1.3
Manganese (Mn), % 0.1 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.2
0 to 0.2
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0.35 to 1.0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.16
Residuals, % 0 to 0.010
0 to 0.15