MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. 358.0 Aluminum

EN-MC21120 magnesium belongs to the magnesium alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
71
Elongation at Break, % 2.2 to 6.7
3.5 to 6.0
Fatigue Strength, MPa 84 to 96
100 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
27
Shear Strength, MPa 110 to 160
300 to 320
Tensile Strength: Ultimate (UTS), MPa 200 to 270
350 to 370
Tensile Strength: Yield (Proof), MPa 130 to 170
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 350
520
Maximum Temperature: Mechanical, °C 130
170
Melting Completion (Liquidus), °C 600
600
Melting Onset (Solidus), °C 490
560
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 76
150
Thermal Expansion, µm/m-K 26
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
36
Electrical Conductivity: Equal Weight (Specific), % IACS 59
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
2.6
Embodied Carbon, kg CO2/kg material 22
8.7
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
590 to 710
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 69
53
Strength to Weight: Axial, points 31 to 43
37 to 39
Strength to Weight: Bending, points 43 to 53
42 to 44
Thermal Diffusivity, mm2/s 44
63
Thermal Shock Resistance, points 11 to 16
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.3 to 9.7
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.3
Magnesium (Mg), % 88.6 to 91.3
0.4 to 0.6
Manganese (Mn), % 0.1 to 0.5
0 to 0.2
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.2
7.6 to 8.6
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0.35 to 1.0
0 to 0.2
Residuals, % 0 to 0.010
0 to 0.15

Comparable Variants