MakeItFrom.com
Menu (ESC)

EN-MC21120 Magnesium vs. 6162 Aluminum

EN-MC21120 magnesium belongs to the magnesium alloys classification, while 6162 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC21120 magnesium and the bottom bar is 6162 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
68
Elongation at Break, % 2.2 to 6.7
6.7 to 9.1
Fatigue Strength, MPa 84 to 96
100 to 130
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 18
26
Shear Strength, MPa 110 to 160
170 to 180
Tensile Strength: Ultimate (UTS), MPa 200 to 270
290 to 300
Tensile Strength: Yield (Proof), MPa 130 to 170
260 to 270

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 130
160
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 490
620
Specific Heat Capacity, J/kg-K 990
900
Thermal Conductivity, W/m-K 76
190
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
50
Electrical Conductivity: Equal Weight (Specific), % IACS 59
170

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.7
2.7
Embodied Carbon, kg CO2/kg material 22
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 990
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.0 to 15
19 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 180 to 320
510 to 550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 69
50
Strength to Weight: Axial, points 31 to 43
29 to 30
Strength to Weight: Bending, points 43 to 53
36
Thermal Diffusivity, mm2/s 44
79
Thermal Shock Resistance, points 11 to 16
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 8.3 to 9.7
96.7 to 98.9
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.5
Magnesium (Mg), % 88.6 to 91.3
0.7 to 1.1
Manganese (Mn), % 0.1 to 0.5
0 to 0.1
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.2
0.4 to 0.8
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0.35 to 1.0
0 to 0.25
Residuals, % 0 to 0.010
0 to 0.15

Comparable Variants