MakeItFrom.com
Menu (ESC)

EN-MC21210 Magnesium vs. 5056 Aluminum

EN-MC21210 magnesium belongs to the magnesium alloys classification, while 5056 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN-MC21210 magnesium and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
67
Elongation at Break, % 14
4.9 to 31
Fatigue Strength, MPa 70
140 to 200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
25
Shear Strength, MPa 110
170 to 240
Tensile Strength: Ultimate (UTS), MPa 190
290 to 460
Tensile Strength: Yield (Proof), MPa 90
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 100
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 570
570
Specific Heat Capacity, J/kg-K 1000
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
29
Electrical Conductivity: Equal Weight (Specific), % IACS 130
99

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.6
2.7
Embodied Carbon, kg CO2/kg material 24
9.0
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 980
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 92
170 to 1220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
51
Strength to Weight: Axial, points 32
30 to 48
Strength to Weight: Bending, points 44
36 to 50
Thermal Diffusivity, mm2/s 76
53
Thermal Shock Resistance, points 11
13 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.6 to 2.6
93 to 95.4
Chromium (Cr), % 0
0.050 to 0.2
Copper (Cu), % 0 to 0.010
0 to 0.1
Iron (Fe), % 0 to 0.0050
0 to 0.4
Magnesium (Mg), % 96.3 to 98.3
4.5 to 5.6
Manganese (Mn), % 0.1 to 0.7
0.050 to 0.2
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.1
0 to 0.3
Zinc (Zn), % 0 to 0.2
0 to 0.1
Residuals, % 0 to 0.010
0 to 0.15