MakeItFrom.com
Menu (ESC)

EN-MC21210 Magnesium vs. 5083 Aluminum

EN-MC21210 magnesium belongs to the magnesium alloys classification, while 5083 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN-MC21210 magnesium and the bottom bar is 5083 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 48
75 to 110
Elastic (Young's, Tensile) Modulus, GPa 44
68
Elongation at Break, % 14
1.1 to 17
Fatigue Strength, MPa 70
93 to 190
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 110
170 to 220
Tensile Strength: Ultimate (UTS), MPa 190
290 to 390
Tensile Strength: Yield (Proof), MPa 90
110 to 340

Thermal Properties

Latent Heat of Fusion, J/g 350
400
Maximum Temperature: Mechanical, °C 100
190
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 570
580
Specific Heat Capacity, J/kg-K 1000
900
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 27
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
29
Electrical Conductivity: Equal Weight (Specific), % IACS 130
96

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.6
2.7
Embodied Carbon, kg CO2/kg material 24
8.9
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 980
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
4.2 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 92
95 to 860
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
50
Strength to Weight: Axial, points 32
29 to 40
Strength to Weight: Bending, points 44
36 to 44
Thermal Diffusivity, mm2/s 76
48
Thermal Shock Resistance, points 11
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.6 to 2.6
92.4 to 95.6
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 0 to 0.010
0 to 0.1
Iron (Fe), % 0 to 0.0050
0 to 0.4
Magnesium (Mg), % 96.3 to 98.3
4.0 to 4.9
Manganese (Mn), % 0.1 to 0.7
0.4 to 1.0
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.2
0 to 0.25
Residuals, % 0 to 0.010
0 to 0.15