MakeItFrom.com
Menu (ESC)

EN-MC21210 Magnesium vs. 6025 Aluminum

EN-MC21210 magnesium belongs to the magnesium alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC21210 magnesium and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
70
Elongation at Break, % 14
2.8 to 10
Fatigue Strength, MPa 70
67 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 110
110 to 140
Tensile Strength: Ultimate (UTS), MPa 190
190 to 240
Tensile Strength: Yield (Proof), MPa 90
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 350
410
Maximum Temperature: Mechanical, °C 100
160
Melting Completion (Liquidus), °C 600
650
Melting Onset (Solidus), °C 570
550
Specific Heat Capacity, J/kg-K 1000
900
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 27
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
33
Electrical Conductivity: Equal Weight (Specific), % IACS 130
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 1.6
2.8
Embodied Carbon, kg CO2/kg material 24
8.5
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 980
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 92
33 to 310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 72
50
Strength to Weight: Axial, points 32
19 to 24
Strength to Weight: Bending, points 44
26 to 31
Thermal Diffusivity, mm2/s 76
54
Thermal Shock Resistance, points 11
8.2 to 10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 1.6 to 2.6
91.7 to 96.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.010
0.2 to 0.7
Iron (Fe), % 0 to 0.0050
0 to 0.7
Magnesium (Mg), % 96.3 to 98.3
2.1 to 3.0
Manganese (Mn), % 0.1 to 0.7
0.6 to 1.4
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.1
0.8 to 1.5
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0 to 0.010
0 to 0.15