MakeItFrom.com
Menu (ESC)

EN-MC21220 Magnesium vs. 358.0 Aluminum

EN-MC21220 magnesium belongs to the magnesium alloys classification, while 358.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC21220 magnesium and the bottom bar is 358.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
71
Elongation at Break, % 11
3.5 to 6.0
Fatigue Strength, MPa 89
100 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
27
Shear Strength, MPa 120
300 to 320
Tensile Strength: Ultimate (UTS), MPa 210
350 to 370
Tensile Strength: Yield (Proof), MPa 120
290 to 320

Thermal Properties

Latent Heat of Fusion, J/g 350
520
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 600
600
Melting Onset (Solidus), °C 540
560
Specific Heat Capacity, J/kg-K 1000
900
Thermal Conductivity, W/m-K 65
150
Thermal Expansion, µm/m-K 27
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 16
36
Electrical Conductivity: Equal Weight (Specific), % IACS 87
130

Otherwise Unclassified Properties

Base Metal Price, % relative 12
19
Density, g/cm3 1.7
2.6
Embodied Carbon, kg CO2/kg material 23
8.7
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 990
1090

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
12 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 160
590 to 710
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 71
53
Strength to Weight: Axial, points 34
37 to 39
Strength to Weight: Bending, points 46
42 to 44
Thermal Diffusivity, mm2/s 39
63
Thermal Shock Resistance, points 12
16 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 4.4 to 5.5
89.1 to 91.8
Beryllium (Be), % 0
0.1 to 0.3
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.010
0 to 0.2
Iron (Fe), % 0 to 0.0050
0 to 0.3
Magnesium (Mg), % 93.5 to 95.5
0.4 to 0.6
Manganese (Mn), % 0.1 to 0.6
0 to 0.2
Nickel (Ni), % 0 to 0.0020
0
Silicon (Si), % 0 to 0.1
7.6 to 8.6
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.2
Residuals, % 0 to 0.010
0 to 0.15