MakeItFrom.com
Menu (ESC)

EN-MC32110 Magnesium vs. ASTM A369 Grade FP92

EN-MC32110 magnesium belongs to the magnesium alloys classification, while ASTM A369 grade FP92 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC32110 magnesium and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60
210
Elastic (Young's, Tensile) Modulus, GPa 49
190
Elongation at Break, % 2.2
19
Fatigue Strength, MPa 80
330
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 19
76
Shear Strength, MPa 120
440
Tensile Strength: Ultimate (UTS), MPa 220
710
Tensile Strength: Yield (Proof), MPa 140
490

Thermal Properties

Latent Heat of Fusion, J/g 330
260
Maximum Temperature: Mechanical, °C 99
590
Melting Completion (Liquidus), °C 600
1490
Melting Onset (Solidus), °C 500
1450
Specific Heat Capacity, J/kg-K 950
470
Thermal Conductivity, W/m-K 120
26
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 32
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
10

Otherwise Unclassified Properties

Base Metal Price, % relative 13
11
Density, g/cm3 2.1
7.9
Embodied Carbon, kg CO2/kg material 22
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 920
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.3
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
620
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 38
22
Thermal Diffusivity, mm2/s 58
6.9
Thermal Shock Resistance, points 12
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.2
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 2.4 to 3.0
0
Iron (Fe), % 0 to 0.050
85.8 to 89.1
Magnesium (Mg), % 89.3 to 91.9
0
Manganese (Mn), % 0.25 to 0.75
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0 to 0.010
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 5.5 to 6.5
0
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.010
0