MakeItFrom.com
Menu (ESC)

EN-MC35110 Magnesium vs. S31060 Stainless Steel

EN-MC35110 magnesium belongs to the magnesium alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC35110 magnesium and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.1
46
Fatigue Strength, MPa 110
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
78
Shear Strength, MPa 130
480
Tensile Strength: Ultimate (UTS), MPa 230
680
Tensile Strength: Yield (Proof), MPa 150
310

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 140
1080
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 520
1370
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
18
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
3.4
Embodied Energy, MJ/kg 170
48
Embodied Water, L/kg 940
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.3
260
Resilience: Unit (Modulus of Resilience), kJ/m3 260
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 34
24
Strength to Weight: Bending, points 44
22
Thermal Diffusivity, mm2/s 61
4.0
Thermal Shock Resistance, points 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Magnesium (Mg), % 92 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.0050
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0