MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. SAE-AISI 1039 Steel

EN-MC65120 magnesium belongs to the magnesium alloys classification, while SAE-AISI 1039 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is SAE-AISI 1039 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
180 to 200
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.1
14 to 18
Fatigue Strength, MPa 80
230 to 370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 92
380 to 420
Tensile Strength: Ultimate (UTS), MPa 160
610 to 690
Tensile Strength: Yield (Proof), MPa 110
340 to 580

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 520
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 25
1.8
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 25
1.4
Embodied Energy, MJ/kg 190
18
Embodied Water, L/kg 930
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
88 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 140
310 to 890
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 23
22 to 24
Strength to Weight: Bending, points 34
20 to 22
Thermal Diffusivity, mm2/s 56
14
Thermal Shock Resistance, points 9.8
19 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.37 to 0.44
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
98.5 to 98.9
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0.7 to 1.0
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0
Sulfur (S), % 0
0 to 0.050
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0