MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. C68000 Brass

EN-MC65120 magnesium belongs to the magnesium alloys classification, while C68000 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is C68000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
100
Elongation at Break, % 3.1
27
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 160
390
Tensile Strength: Yield (Proof), MPa 110
140

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 180
120
Melting Completion (Liquidus), °C 590
880
Melting Onset (Solidus), °C 520
870
Specific Heat Capacity, J/kg-K 970
390
Thermal Conductivity, W/m-K 100
96
Thermal Expansion, µm/m-K 26
21

Otherwise Unclassified Properties

Base Metal Price, % relative 25
23
Density, g/cm3 1.9
8.0
Embodied Carbon, kg CO2/kg material 25
2.8
Embodied Energy, MJ/kg 190
48
Embodied Water, L/kg 930
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
82
Resilience: Unit (Modulus of Resilience), kJ/m3 140
95
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 62
20
Strength to Weight: Axial, points 23
14
Strength to Weight: Bending, points 34
15
Thermal Diffusivity, mm2/s 56
31
Thermal Shock Resistance, points 9.8
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Copper (Cu), % 0 to 0.030
56 to 60
Iron (Fe), % 0 to 0.010
0.25 to 1.3
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0.010 to 0.5
Nickel (Ni), % 0 to 0.0050
0.2 to 0.8
Silicon (Si), % 0 to 0.010
0.040 to 0.15
Tin (Sn), % 0
0.75 to 1.1
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
35.6 to 42.8
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.5