MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. C84200 Brass

EN-MC65120 magnesium belongs to the magnesium alloys classification, while C84200 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is C84200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 3.1
15
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 160
250
Tensile Strength: Yield (Proof), MPa 110
120

Thermal Properties

Latent Heat of Fusion, J/g 330
180
Maximum Temperature: Mechanical, °C 180
150
Melting Completion (Liquidus), °C 590
990
Melting Onset (Solidus), °C 520
840
Specific Heat Capacity, J/kg-K 970
370
Thermal Conductivity, W/m-K 100
72
Thermal Expansion, µm/m-K 26
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
16
Electrical Conductivity: Equal Weight (Specific), % IACS 120
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
30
Density, g/cm3 1.9
8.5
Embodied Carbon, kg CO2/kg material 25
3.1
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 930
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
31
Resilience: Unit (Modulus of Resilience), kJ/m3 140
72
Stiffness to Weight: Axial, points 13
6.9
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 23
8.2
Strength to Weight: Bending, points 34
10
Thermal Diffusivity, mm2/s 56
23
Thermal Shock Resistance, points 9.8
9.1

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 0 to 0.030
78 to 82
Iron (Fe), % 0 to 0.010
0 to 0.4
Lead (Pb), % 0
2.0 to 3.0
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.010
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
10 to 16
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.7