MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. C93600 Bronze

EN-MC65120 magnesium belongs to the magnesium alloys classification, while C93600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is C93600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
99
Elongation at Break, % 3.1
14
Poisson's Ratio 0.29
0.35
Shear Modulus, GPa 17
36
Tensile Strength: Ultimate (UTS), MPa 160
260
Tensile Strength: Yield (Proof), MPa 110
140

Thermal Properties

Latent Heat of Fusion, J/g 330
170
Maximum Temperature: Mechanical, °C 180
150
Melting Completion (Liquidus), °C 590
940
Melting Onset (Solidus), °C 520
840
Specific Heat Capacity, J/kg-K 970
350
Thermal Conductivity, W/m-K 100
49
Thermal Expansion, µm/m-K 26
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
11
Electrical Conductivity: Equal Weight (Specific), % IACS 120
11

Otherwise Unclassified Properties

Base Metal Price, % relative 25
31
Density, g/cm3 1.9
9.0
Embodied Carbon, kg CO2/kg material 25
3.2
Embodied Energy, MJ/kg 190
51
Embodied Water, L/kg 930
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
31
Resilience: Unit (Modulus of Resilience), kJ/m3 140
98
Stiffness to Weight: Axial, points 13
6.1
Stiffness to Weight: Bending, points 62
17
Strength to Weight: Axial, points 23
7.9
Strength to Weight: Bending, points 34
9.9
Thermal Diffusivity, mm2/s 56
16
Thermal Shock Resistance, points 9.8
9.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.55
Copper (Cu), % 0 to 0.030
79 to 83
Iron (Fe), % 0 to 0.010
0 to 0.2
Lead (Pb), % 0
11 to 13
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0 to 1.0
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0 to 0.010
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 0
6.0 to 8.0
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
0 to 1.0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.7