MakeItFrom.com
Menu (ESC)

EN-MC65120 Magnesium vs. C94800 Bronze

EN-MC65120 magnesium belongs to the magnesium alloys classification, while C94800 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65120 magnesium and the bottom bar is C94800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 3.1
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
43
Tensile Strength: Ultimate (UTS), MPa 160
310
Tensile Strength: Yield (Proof), MPa 110
160

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 590
1030
Melting Onset (Solidus), °C 520
900
Specific Heat Capacity, J/kg-K 970
380
Thermal Conductivity, W/m-K 100
39
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
12
Electrical Conductivity: Equal Weight (Specific), % IACS 120
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
34
Density, g/cm3 1.9
8.8
Embodied Carbon, kg CO2/kg material 25
3.5
Embodied Energy, MJ/kg 190
56
Embodied Water, L/kg 930
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.4
58
Resilience: Unit (Modulus of Resilience), kJ/m3 140
110
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 23
9.8
Strength to Weight: Bending, points 34
12
Thermal Diffusivity, mm2/s 56
12
Thermal Shock Resistance, points 9.8
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 0 to 0.030
84 to 89
Iron (Fe), % 0 to 0.010
0 to 0.25
Lead (Pb), % 0
0.3 to 1.0
Magnesium (Mg), % 91.8 to 95.1
0
Manganese (Mn), % 0 to 0.15
0 to 0.2
Nickel (Ni), % 0 to 0.0050
4.5 to 6.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0 to 0.010
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
4.5 to 6.0
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.0
1.0 to 2.5
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 1.3