MakeItFrom.com
Menu (ESC)

EN-MC65210 Magnesium vs. 2030 Aluminum

EN-MC65210 magnesium belongs to the magnesium alloys classification, while 2030 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN-MC65210 magnesium and the bottom bar is 2030 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
70
Elongation at Break, % 2.8
5.6 to 8.0
Fatigue Strength, MPa 110
91 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 150
220 to 250
Tensile Strength: Ultimate (UTS), MPa 270
370 to 420
Tensile Strength: Yield (Proof), MPa 200
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 340
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 610
640
Melting Onset (Solidus), °C 540
510
Specific Heat Capacity, J/kg-K 970
870
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
34
Electrical Conductivity: Equal Weight (Specific), % IACS 110
99

Otherwise Unclassified Properties

Density, g/cm3 2.0
3.1
Embodied Carbon, kg CO2/kg material 27
8.0
Embodied Energy, MJ/kg 220
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 450
390 to 530
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 59
45
Strength to Weight: Axial, points 38
33 to 38
Strength to Weight: Bending, points 47
37 to 40
Thermal Diffusivity, mm2/s 58
50
Thermal Shock Resistance, points 17
16 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
88.9 to 95.2
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
3.3 to 4.5
Iron (Fe), % 0 to 0.010
0 to 0.7
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 92.6 to 95.6
0.5 to 1.3
Manganese (Mn), % 0 to 0.15
0.2 to 1.0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.8
Silver (Ag), % 2.0 to 3.0
0
Titanium (Ti), % 0
0 to 0.2
Unspecified Rare Earths, % 2.0 to 3.0
0
Zinc (Zn), % 0 to 0.2
0 to 0.5
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.3