MakeItFrom.com
Menu (ESC)

EN-MC65210 Magnesium vs. CC766S Brass

EN-MC65210 magnesium belongs to the magnesium alloys classification, while CC766S brass belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65210 magnesium and the bottom bar is CC766S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
120
Elastic (Young's, Tensile) Modulus, GPa 44
110
Elongation at Break, % 2.8
28
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 17
40
Tensile Strength: Ultimate (UTS), MPa 270
500
Tensile Strength: Yield (Proof), MPa 200
190

Thermal Properties

Latent Heat of Fusion, J/g 340
180
Maximum Temperature: Mechanical, °C 170
130
Melting Completion (Liquidus), °C 610
840
Melting Onset (Solidus), °C 540
800
Specific Heat Capacity, J/kg-K 970
390
Thermal Conductivity, W/m-K 110
89
Thermal Expansion, µm/m-K 26
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
36

Otherwise Unclassified Properties

Density, g/cm3 2.0
8.0
Embodied Carbon, kg CO2/kg material 27
2.8
Embodied Energy, MJ/kg 220
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 450
180
Stiffness to Weight: Axial, points 12
7.3
Stiffness to Weight: Bending, points 59
20
Strength to Weight: Axial, points 38
17
Strength to Weight: Bending, points 47
18
Thermal Diffusivity, mm2/s 58
28
Thermal Shock Resistance, points 17
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.3 to 1.8
Antimony (Sb), % 0
0 to 0.1
Copper (Cu), % 0 to 0.030
58 to 64
Iron (Fe), % 0 to 0.010
0 to 0.5
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 92.6 to 95.6
0
Manganese (Mn), % 0 to 0.15
0 to 0.5
Nickel (Ni), % 0 to 0.0050
0 to 2.0
Silicon (Si), % 0 to 0.010
0 to 0.6
Silver (Ag), % 2.0 to 3.0
0
Tin (Sn), % 0
0 to 0.5
Unspecified Rare Earths, % 2.0 to 3.0
0
Zinc (Zn), % 0 to 0.2
29.5 to 41.7
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0