MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. 3103 Aluminum

EN-MC65220 magnesium belongs to the magnesium alloys classification, while 3103 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is 3103 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 44
70
Elongation at Break, % 2.2
1.1 to 28
Fatigue Strength, MPa 110
38 to 83
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 17
26
Shear Strength, MPa 150
68 to 130
Tensile Strength: Ultimate (UTS), MPa 270
100 to 220
Tensile Strength: Yield (Proof), MPa 200
39 to 200

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 160
190
Melting Completion (Liquidus), °C 610
660
Melting Onset (Solidus), °C 550
640
Specific Heat Capacity, J/kg-K 980
900
Thermal Conductivity, W/m-K 110
160
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
42
Electrical Conductivity: Equal Weight (Specific), % IACS 120
140

Otherwise Unclassified Properties

Base Metal Price, % relative 80
9.5
Density, g/cm3 1.9
2.8
Embodied Carbon, kg CO2/kg material 27
8.2
Embodied Energy, MJ/kg 210
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 450
11 to 280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
50
Strength to Weight: Axial, points 40
10 to 22
Strength to Weight: Bending, points 49
18 to 30
Thermal Diffusivity, mm2/s 61
64
Thermal Shock Resistance, points 17
4.6 to 9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
96.3 to 99.1
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0.050 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.010
0 to 0.7
Magnesium (Mg), % 93.8 to 96.8
0 to 0.3
Manganese (Mn), % 0 to 0.15
0.9 to 1.5
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.5
Silver (Ag), % 1.3 to 1.7
0
Titanium (Ti), % 0
0 to 0.1
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Zirconium (Zr), % 0.4 to 1.0
0 to 0.1
Residuals, % 0 to 0.010
0 to 0.15