MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. EN 1.4542 Stainless Steel

EN-MC65220 magnesium belongs to the magnesium alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
5.7 to 20
Fatigue Strength, MPa 110
370 to 640
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 150
550 to 860
Tensile Strength: Ultimate (UTS), MPa 270
880 to 1470
Tensile Strength: Yield (Proof), MPa 200
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 340
280
Maximum Temperature: Mechanical, °C 160
860
Melting Completion (Liquidus), °C 610
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 980
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 80
13
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 27
2.7
Embodied Energy, MJ/kg 210
39

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 450
880 to 4360
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 40
31 to 52
Strength to Weight: Bending, points 49
26 to 37
Thermal Diffusivity, mm2/s 61
4.3
Thermal Shock Resistance, points 17
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0.050 to 0.1
3.0 to 5.0
Iron (Fe), % 0 to 0.010
69.6 to 79
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.0050
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.7
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0