MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. C81500 Copper

EN-MC65220 magnesium belongs to the magnesium alloys classification, while C81500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
110
Elastic (Young's, Tensile) Modulus, GPa 44
120
Elongation at Break, % 2.2
17
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
44
Tensile Strength: Ultimate (UTS), MPa 270
350
Tensile Strength: Yield (Proof), MPa 200
280

Thermal Properties

Latent Heat of Fusion, J/g 340
210
Maximum Temperature: Mechanical, °C 160
200
Melting Completion (Liquidus), °C 610
1090
Melting Onset (Solidus), °C 550
1080
Specific Heat Capacity, J/kg-K 980
390
Thermal Conductivity, W/m-K 110
320
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
82
Electrical Conductivity: Equal Weight (Specific), % IACS 120
83

Otherwise Unclassified Properties

Base Metal Price, % relative 80
31
Density, g/cm3 1.9
8.9
Embodied Carbon, kg CO2/kg material 27
2.6
Embodied Energy, MJ/kg 210
41

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
56
Resilience: Unit (Modulus of Resilience), kJ/m3 450
330
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 40
11
Strength to Weight: Bending, points 49
12
Thermal Diffusivity, mm2/s 61
91
Thermal Shock Resistance, points 17
12

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 0.050 to 0.1
97.4 to 99.6
Iron (Fe), % 0 to 0.010
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0 to 0.15
Silver (Ag), % 1.3 to 1.7
0
Tin (Sn), % 0
0 to 0.1
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0 to 0.1
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.5