MakeItFrom.com
Menu (ESC)

EN-MC65220 Magnesium vs. S31060 Stainless Steel

EN-MC65220 magnesium belongs to the magnesium alloys classification, while S31060 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC65220 magnesium and the bottom bar is S31060 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.2
46
Fatigue Strength, MPa 110
290
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
78
Shear Strength, MPa 150
480
Tensile Strength: Ultimate (UTS), MPa 270
680
Tensile Strength: Yield (Proof), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 160
1080
Melting Completion (Liquidus), °C 610
1420
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 980
480
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 80
18
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 27
3.4
Embodied Energy, MJ/kg 210
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.5
260
Resilience: Unit (Modulus of Resilience), kJ/m3 450
250
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 40
24
Strength to Weight: Bending, points 49
22
Thermal Diffusivity, mm2/s 61
4.0
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0.050 to 0.1
Cerium (Ce), % 0
0 to 0.070
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0 to 0.010
61.4 to 67.8
Lanthanum (La), % 0
0 to 0.070
Magnesium (Mg), % 93.8 to 96.8
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.0050
10 to 12.5
Nitrogen (N), % 0
0.18 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.5
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 1.5 to 3.0
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0