MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. ASTM A182 Grade F3V

EN-MC95310 magnesium belongs to the magnesium alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
210
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.2
20
Fatigue Strength, MPa 110
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 160
410
Tensile Strength: Ultimate (UTS), MPa 280
660
Tensile Strength: Yield (Proof), MPa 190
470

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
470
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 540
1430
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
39
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 50
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.2
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 29
2.3
Embodied Energy, MJ/kg 260
33
Embodied Water, L/kg 900
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
120
Resilience: Unit (Modulus of Resilience), kJ/m3 420
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
23
Strength to Weight: Bending, points 49
21
Thermal Diffusivity, mm2/s 28
10
Thermal Shock Resistance, points 18
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
94.4 to 95.7
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.0050
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.010
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.015 to 0.035
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0.2 to 0.3
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0