MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. EN 1.0477 Steel

EN-MC95310 magnesium belongs to the magnesium alloys classification, while EN 1.0477 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is EN 1.0477 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
130
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 2.2
24
Fatigue Strength, MPa 110
170
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 160
280
Tensile Strength: Ultimate (UTS), MPa 280
440
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
49
Thermal Expansion, µm/m-K 25
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 50
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
2.2
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 29
1.5
Embodied Energy, MJ/kg 260
20
Embodied Water, L/kg 900
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
90
Resilience: Unit (Modulus of Resilience), kJ/m3 420
150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 40
16
Strength to Weight: Bending, points 49
16
Thermal Diffusivity, mm2/s 28
13
Thermal Shock Resistance, points 18
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.030
0 to 0.2
Iron (Fe), % 0 to 0.010
96.9 to 99.4
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0.6 to 1.4
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.0050
0 to 0.3
Niobium (Nb), % 0
0 to 0.030
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.010
0 to 0.4
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 1.5 to 4.0
0
Vanadium (V), % 0
0 to 0.050
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0