MakeItFrom.com
Menu (ESC)

EN-MC95310 Magnesium vs. C40500 Penny Bronze

EN-MC95310 magnesium belongs to the magnesium alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95310 magnesium and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 2.2
3.0 to 49
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 17
43
Shear Strength, MPa 160
210 to 310
Tensile Strength: Ultimate (UTS), MPa 280
270 to 540
Tensile Strength: Yield (Proof), MPa 190
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 330
200
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 650
1060
Melting Onset (Solidus), °C 540
1020
Specific Heat Capacity, J/kg-K 960
380
Thermal Conductivity, W/m-K 51
160
Thermal Expansion, µm/m-K 25
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
41
Electrical Conductivity: Equal Weight (Specific), % IACS 50
42

Otherwise Unclassified Properties

Base Metal Price, % relative 34
30
Density, g/cm3 1.9
8.8
Embodied Carbon, kg CO2/kg material 29
2.7
Embodied Energy, MJ/kg 260
43
Embodied Water, L/kg 900
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 420
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 61
18
Strength to Weight: Axial, points 40
8.5 to 17
Strength to Weight: Bending, points 49
10 to 17
Thermal Diffusivity, mm2/s 28
48
Thermal Shock Resistance, points 18
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 0 to 0.030
94 to 96
Iron (Fe), % 0 to 0.010
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.9 to 93.4
0
Manganese (Mn), % 0 to 0.15
0
Nickel (Ni), % 0 to 0.0050
0
Silicon (Si), % 0 to 0.010
0
Tin (Sn), % 0
0.7 to 1.3
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
2.1 to 5.3
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0 to 0.5