MakeItFrom.com
Menu (ESC)

EN-MC95320 Magnesium vs. EN 1.4150 Stainless Steel

EN-MC95320 magnesium belongs to the magnesium alloys classification, while EN 1.4150 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95320 magnesium and the bottom bar is EN 1.4150 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 83
220
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.2
20
Fatigue Strength, MPa 110
270
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 140
460
Tensile Strength: Ultimate (UTS), MPa 250
730
Tensile Strength: Yield (Proof), MPa 190
430

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 180
840
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 960
490
Thermal Conductivity, W/m-K 52
23
Thermal Expansion, µm/m-K 25
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 53
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 34
8.5
Density, g/cm3 1.9
7.6
Embodied Carbon, kg CO2/kg material 28
2.8
Embodied Energy, MJ/kg 250
42
Embodied Water, L/kg 910
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1
120
Resilience: Unit (Modulus of Resilience), kJ/m3 420
470
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 36
27
Strength to Weight: Bending, points 45
24
Thermal Diffusivity, mm2/s 28
6.2
Thermal Shock Resistance, points 16
27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.45 to 0.6
Chromium (Cr), % 0
15 to 16.5
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
79 to 82.8
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.7 to 93.5
0
Manganese (Mn), % 0 to 0.15
0 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 0 to 0.0050
0 to 0.4
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
1.3 to 1.7
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 2.4 to 4.4
0
Vanadium (V), % 0
0.2 to 0.4
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0