MakeItFrom.com
Menu (ESC)

EN-MC95320 Magnesium vs. N08028 Stainless Steel

EN-MC95320 magnesium belongs to the magnesium alloys classification, while N08028 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN-MC95320 magnesium and the bottom bar is N08028 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 83
180
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.2
45
Fatigue Strength, MPa 110
220
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
80
Shear Strength, MPa 140
400
Tensile Strength: Ultimate (UTS), MPa 250
570
Tensile Strength: Yield (Proof), MPa 190
240

Thermal Properties

Latent Heat of Fusion, J/g 330
320
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
12
Thermal Expansion, µm/m-K 25
16

Otherwise Unclassified Properties

Base Metal Price, % relative 34
37
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 28
6.4
Embodied Energy, MJ/kg 250
89
Embodied Water, L/kg 910
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.1
210
Resilience: Unit (Modulus of Resilience), kJ/m3 420
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
24
Strength to Weight: Axial, points 36
19
Strength to Weight: Bending, points 45
19
Thermal Diffusivity, mm2/s 28
3.2
Thermal Shock Resistance, points 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 0 to 0.030
0.6 to 1.4
Iron (Fe), % 0 to 0.010
29 to 40.4
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.7 to 93.5
0
Manganese (Mn), % 0 to 0.15
0 to 2.5
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0 to 0.0050
30 to 34
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.010
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.010
0