MakeItFrom.com
Menu (ESC)

EQ21A Magnesium vs. S36200 Stainless Steel

EQ21A magnesium belongs to the magnesium alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EQ21A magnesium and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 2.4
3.4 to 4.6
Fatigue Strength, MPa 110
450 to 570
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 150
680 to 810
Tensile Strength: Ultimate (UTS), MPa 250
1180 to 1410
Tensile Strength: Yield (Proof), MPa 190
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 340
280
Maximum Temperature: Mechanical, °C 160
820
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 560
1400
Specific Heat Capacity, J/kg-K 980
480
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 25
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 80
12
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 27
2.8
Embodied Energy, MJ/kg 210
40

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 410
2380 to 3930
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 37
42 to 50
Strength to Weight: Bending, points 47
32 to 36
Thermal Diffusivity, mm2/s 62
4.3
Thermal Shock Resistance, points 15
40 to 48

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 0.050 to 0.1
0
Iron (Fe), % 0
75.4 to 79.5
Magnesium (Mg), % 93.9 to 96.8
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 0 to 0.010
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Silver (Ag), % 1.3 to 1.7
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9
Unspecified Rare Earths, % 1.5 to 3.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0