MakeItFrom.com
Menu (ESC)

EZ33A Magnesium vs. S21603 Stainless Steel

EZ33A magnesium belongs to the magnesium alloys classification, while S21603 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EZ33A magnesium and the bottom bar is S21603 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55
200
Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.6
45
Fatigue Strength, MPa 70
360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
79
Shear Strength, MPa 140
490
Tensile Strength: Ultimate (UTS), MPa 150
690
Tensile Strength: Yield (Proof), MPa 100
390

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 250
990
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 570
1380
Specific Heat Capacity, J/kg-K 970
480
Thermal Expansion, µm/m-K 27
17

Otherwise Unclassified Properties

Base Metal Price, % relative 25
17
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 25
3.6
Embodied Energy, MJ/kg 190
50
Embodied Water, L/kg 930
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.6
270
Resilience: Unit (Modulus of Resilience), kJ/m3 120
380
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 33
22
Thermal Shock Resistance, points 9.2
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17.5 to 22
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
57.6 to 67.8
Magnesium (Mg), % 91.5 to 95
0
Manganese (Mn), % 0
7.5 to 9.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.010
5.0 to 7.0
Nitrogen (N), % 0
0.25 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.5 to 4.0
0
Zinc (Zn), % 2.0 to 3.1
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0