MakeItFrom.com
Menu (ESC)

H06 C12500 Copper vs. H06 C19700 Copper

Both H06 C12500 copper and H06 C19700 copper are copper alloys. Both are furnished in the H06 (extra hard) temper. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H06 C12500 copper and the bottom bar is H06 C19700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 1.5
4.1
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 43
43
Shear Strength, MPa 220
280
Tensile Strength: Ultimate (UTS), MPa 380
480
Tensile Strength: Yield (Proof), MPa 370
460

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1080
1090
Melting Onset (Solidus), °C 1070
1040
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 350
250
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
86
Electrical Conductivity: Equal Weight (Specific), % IACS 93
87

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.9
Embodied Carbon, kg CO2/kg material 2.6
2.6
Embodied Energy, MJ/kg 41
41
Embodied Water, L/kg 310
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
19
Resilience: Unit (Modulus of Resilience), kJ/m3 580
920
Stiffness to Weight: Axial, points 7.2
7.2
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12
15
Strength to Weight: Bending, points 13
15
Thermal Diffusivity, mm2/s 100
73
Thermal Shock Resistance, points 13
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 99.88 to 100
97.4 to 99.59
Iron (Fe), % 0
0.3 to 1.2
Lead (Pb), % 0 to 0.0040
0 to 0.050
Magnesium (Mg), % 0
0.010 to 0.2
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0 to 0.050
0 to 0.050
Phosphorus (P), % 0
0.1 to 0.4
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0 to 0.3
0 to 0.2