MakeItFrom.com
Menu (ESC)

H06 C12500 Copper vs. H06 C42500 Brass

Both H06 C12500 copper and H06 C42500 brass are copper alloys. Both are furnished in the H06 (extra hard) temper. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H06 C12500 copper and the bottom bar is H06 C42500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 1.5
7.0
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 43
42
Shear Strength, MPa 220
330
Tensile Strength: Ultimate (UTS), MPa 380
570
Tensile Strength: Yield (Proof), MPa 370
530

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1080
1030
Melting Onset (Solidus), °C 1070
1010
Specific Heat Capacity, J/kg-K 390
380
Thermal Conductivity, W/m-K 350
120
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 92
28
Electrical Conductivity: Equal Weight (Specific), % IACS 93
29

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 8.9
8.7
Embodied Carbon, kg CO2/kg material 2.6
2.8
Embodied Energy, MJ/kg 41
46
Embodied Water, L/kg 310
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.6
39
Resilience: Unit (Modulus of Resilience), kJ/m3 580
1280
Stiffness to Weight: Axial, points 7.2
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 12
18
Strength to Weight: Bending, points 13
18
Thermal Diffusivity, mm2/s 100
36
Thermal Shock Resistance, points 13
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0 to 0.0030
0
Arsenic (As), % 0 to 0.012
0
Bismuth (Bi), % 0 to 0.0030
0
Copper (Cu), % 99.88 to 100
87 to 90
Iron (Fe), % 0
0 to 0.050
Lead (Pb), % 0 to 0.0040
0 to 0.050
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0
0 to 0.35
Tellurium (Te), % 0 to 0.025
0
Tin (Sn), % 0
1.5 to 3.0
Zinc (Zn), % 0
6.1 to 11.5
Residuals, % 0 to 0.3
0 to 0.5