MakeItFrom.com
Menu (ESC)

H06 C15100 Copper vs. H06 C65100 Bronze

Both H06 C15100 copper and H06 C65100 bronze are copper alloys. Both are furnished in the H06 (extra hard) temper. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H06 C15100 copper and the bottom bar is H06 C65100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 3.0
9.4
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 62
86
Shear Modulus, GPa 43
43
Shear Strength, MPa 250
350
Tensile Strength: Ultimate (UTS), MPa 430
560
Tensile Strength: Yield (Proof), MPa 420
390

Thermal Properties

Latent Heat of Fusion, J/g 210
230
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 1100
1060
Melting Onset (Solidus), °C 1030
1030
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 360
57
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 95
12
Electrical Conductivity: Equal Weight (Specific), % IACS 95
12

Otherwise Unclassified Properties

Base Metal Price, % relative 31
30
Density, g/cm3 9.0
8.8
Embodied Carbon, kg CO2/kg material 2.7
2.6
Embodied Energy, MJ/kg 43
41
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13
47
Resilience: Unit (Modulus of Resilience), kJ/m3 760
650
Stiffness to Weight: Axial, points 7.2
7.3
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 13
18
Strength to Weight: Bending, points 14
17
Thermal Diffusivity, mm2/s 100
16
Thermal Shock Resistance, points 15
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Copper (Cu), % 99.8 to 99.95
94.5 to 99.2
Iron (Fe), % 0
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 0.7
Silicon (Si), % 0
0.8 to 2.0
Zinc (Zn), % 0
0 to 1.5
Zirconium (Zr), % 0.050 to 0.15
0
Residuals, % 0 to 0.1
0 to 0.5