MakeItFrom.com
Menu (ESC)

H06 C51000 Bronze vs. H06 C61500 Bronze

Both H06 C51000 bronze and H06 C61500 bronze are copper alloys. Both are furnished in the H06 (extra hard) temper. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is H06 C51000 bronze and the bottom bar is H06 C61500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 7.1
4.0
Poisson's Ratio 0.34
0.34
Rockwell Superficial 30T Hardness 78
84
Shear Modulus, GPa 42
42
Shear Strength, MPa 390
540
Tensile Strength: Ultimate (UTS), MPa 660
930
Tensile Strength: Yield (Proof), MPa 630
690

Thermal Properties

Latent Heat of Fusion, J/g 200
220
Maximum Temperature: Mechanical, °C 190
220
Melting Completion (Liquidus), °C 1050
1040
Melting Onset (Solidus), °C 960
1030
Specific Heat Capacity, J/kg-K 380
430
Thermal Conductivity, W/m-K 77
58
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
13
Electrical Conductivity: Equal Weight (Specific), % IACS 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 33
29
Density, g/cm3 8.8
8.4
Embodied Carbon, kg CO2/kg material 3.1
3.2
Embodied Energy, MJ/kg 50
52
Embodied Water, L/kg 350
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46
34
Resilience: Unit (Modulus of Resilience), kJ/m3 1790
2100
Stiffness to Weight: Axial, points 7.0
7.5
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 21
31
Strength to Weight: Bending, points 19
25
Thermal Diffusivity, mm2/s 23
16
Thermal Shock Resistance, points 24
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
7.7 to 8.3
Copper (Cu), % 92.9 to 95.5
89 to 90.5
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0 to 0.050
0 to 0.015
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0.030 to 0.35
0
Tin (Sn), % 4.5 to 5.8
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0 to 0.5