MakeItFrom.com
Menu (ESC)

H10 C19700 Copper vs. H10 C52100 Bronze

Both H10 C19700 copper and H10 C52100 bronze are copper alloys. Both are furnished in the H10 (extra spring) temper. They have a moderately high 92% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is H10 C19700 copper and the bottom bar is H10 C52100 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 75
100
Rockwell Superficial 30T Hardness 72
82
Shear Modulus, GPa 43
41
Tensile Strength: Ultimate (UTS), MPa 530
800

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 200
180
Melting Completion (Liquidus), °C 1090
1030
Melting Onset (Solidus), °C 1040
880
Specific Heat Capacity, J/kg-K 390
370
Thermal Conductivity, W/m-K 250
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 86
13
Electrical Conductivity: Equal Weight (Specific), % IACS 87
13

Otherwise Unclassified Properties

Base Metal Price, % relative 30
34
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
55
Embodied Water, L/kg 310
370

Common Calculations

Stiffness to Weight: Axial, points 7.2
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 73
19
Thermal Shock Resistance, points 19
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cobalt (Co), % 0 to 0.050
0
Copper (Cu), % 97.4 to 99.59
89.8 to 93
Iron (Fe), % 0.3 to 1.2
0 to 0.1
Lead (Pb), % 0 to 0.050
0 to 0.050
Magnesium (Mg), % 0.010 to 0.2
0
Manganese (Mn), % 0 to 0.050
0
Nickel (Ni), % 0 to 0.050
0
Phosphorus (P), % 0.1 to 0.4
0.030 to 0.35
Tin (Sn), % 0 to 0.2
7.0 to 9.0
Zinc (Zn), % 0 to 0.2
0 to 0.2
Residuals, % 0 to 0.2
0 to 0.5