MakeItFrom.com
Menu (ESC)

H04 C10100 Copper vs. H04 C70600 Copper-nickel

Both H04 C10100 copper and H04 C70600 copper-nickel are copper alloys. Both are furnished in the H04 (full hard) temper. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is H04 C10100 copper and the bottom bar is H04 C70600 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
120
Elongation at Break, % 20
16
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 45
81
Rockwell Superficial 30T Hardness 58
71
Shear Modulus, GPa 43
46
Shear Strength, MPa 180
260
Tensile Strength: Ultimate (UTS), MPa 320
420
Tensile Strength: Yield (Proof), MPa 280
190

Thermal Properties

Latent Heat of Fusion, J/g 210
220
Maximum Temperature: Mechanical, °C 200
220
Melting Completion (Liquidus), °C 1080
1150
Melting Onset (Solidus), °C 1080
1100
Specific Heat Capacity, J/kg-K 390
390
Thermal Conductivity, W/m-K 390
44
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 100
9.8
Electrical Conductivity: Equal Weight (Specific), % IACS 100
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 9.0
8.9
Embodied Carbon, kg CO2/kg material 2.6
3.4
Embodied Energy, MJ/kg 41
51
Embodied Water, L/kg 310
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 61
56
Resilience: Unit (Modulus of Resilience), kJ/m3 330
140
Stiffness to Weight: Axial, points 7.2
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 9.9
13
Strength to Weight: Bending, points 12
14
Thermal Diffusivity, mm2/s 110
13
Thermal Shock Resistance, points 11
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Copper (Cu), % 99.99 to 100
84.7 to 90
Iron (Fe), % 0
1.0 to 1.8
Lead (Pb), % 0 to 0.0010
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
9.0 to 11
Oxygen (O), % 0 to 0.00050
0
Phosphorus (P), % 0 to 0.00030
0
Zinc (Zn), % 0 to 0.00010
0 to 1.0
Residuals, % 0
0 to 0.5