MakeItFrom.com
Menu (ESC)

H04 C16500 Copper vs. H04 C51900 Bronze

Both H04 C16500 copper and H04 C51900 bronze are copper alloys. Both are furnished in the H04 (full hard) temper. They have a moderately high 94% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is H04 C16500 copper and the bottom bar is H04 C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 14
14
Poisson's Ratio 0.34
0.34
Rockwell B Hardness 71
91
Shear Modulus, GPa 43
42
Shear Strength, MPa 300
370
Tensile Strength: Ultimate (UTS), MPa 490
620
Tensile Strength: Yield (Proof), MPa 400
570

Thermal Properties

Latent Heat of Fusion, J/g 210
200
Maximum Temperature: Mechanical, °C 340
180
Melting Completion (Liquidus), °C 1070
1040
Melting Onset (Solidus), °C 1010
930
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 250
66
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
14
Electrical Conductivity: Equal Weight (Specific), % IACS 61
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
33
Density, g/cm3 8.9
8.8
Embodied Carbon, kg CO2/kg material 2.6
3.2
Embodied Energy, MJ/kg 42
51
Embodied Water, L/kg 320
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 66
86
Resilience: Unit (Modulus of Resilience), kJ/m3 700
1450
Stiffness to Weight: Axial, points 7.1
7.0
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 15
19
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 74
20
Thermal Shock Resistance, points 17
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Cadmium (Cd), % 0.6 to 1.0
0
Copper (Cu), % 97.8 to 98.9
91.7 to 95
Iron (Fe), % 0 to 0.020
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Phosphorus (P), % 0
0.030 to 0.35
Tin (Sn), % 0.5 to 0.7
5.0 to 7.0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0 to 0.5
0 to 0.5