MakeItFrom.com
Menu (ESC)

H04 C49300 Brass vs. H04 C52400 Bronze

Both H04 C49300 brass and H04 C52400 bronze are copper alloys. Both are furnished in the H04 (full hard) temper. They have 62% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is H04 C49300 brass and the bottom bar is H04 C52400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 4.5
14
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
41
Shear Strength, MPa 290
410
Tensile Strength: Ultimate (UTS), MPa 520
670
Tensile Strength: Yield (Proof), MPa 390
550

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 880
1000
Melting Onset (Solidus), °C 840
840
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 88
50
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
11
Electrical Conductivity: Equal Weight (Specific), % IACS 17
11

Otherwise Unclassified Properties

Base Metal Price, % relative 26
35
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 50
58
Embodied Water, L/kg 370
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21
88
Resilience: Unit (Modulus of Resilience), kJ/m3 740
1390
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 29
15
Thermal Shock Resistance, points 18
25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Antimony (Sb), % 0 to 0.5
0
Bismuth (Bi), % 0.5 to 2.0
0
Copper (Cu), % 58 to 62
87.8 to 91
Iron (Fe), % 0 to 0.1
0 to 0.1
Lead (Pb), % 0 to 0.010
0 to 0.050
Manganese (Mn), % 0 to 0.030
0
Nickel (Ni), % 0 to 1.5
0
Phosphorus (P), % 0 to 0.2
0.030 to 0.35
Selenium (Se), % 0 to 0.2
0
Silicon (Si), % 0 to 0.1
0
Tin (Sn), % 1.0 to 1.8
9.0 to 11
Zinc (Zn), % 30.6 to 40.5
0 to 0.2
Residuals, % 0 to 0.5
0 to 0.5