MakeItFrom.com
Menu (ESC)

G-CoCr28 Cobalt vs. 772.0 Aluminum

G-CoCr28 cobalt belongs to the cobalt alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is G-CoCr28 cobalt and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
69
Elongation at Break, % 6.7
6.3 to 8.4
Fatigue Strength, MPa 130
94 to 160
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 83
26
Tensile Strength: Ultimate (UTS), MPa 560
260 to 320
Tensile Strength: Yield (Proof), MPa 260
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 320
380
Maximum Temperature: Mechanical, °C 1200
180
Melting Completion (Liquidus), °C 1330
630
Melting Onset (Solidus), °C 1270
580
Specific Heat Capacity, J/kg-K 470
870
Thermal Conductivity, W/m-K 8.5
150
Thermal Expansion, µm/m-K 14
24

Otherwise Unclassified Properties

Base Metal Price, % relative 100
9.5
Density, g/cm3 8.1
3.0
Embodied Carbon, kg CO2/kg material 6.2
8.0
Embodied Energy, MJ/kg 84
150
Embodied Water, L/kg 440
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 160
350 to 430
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 19
25 to 31
Strength to Weight: Bending, points 19
31 to 36
Thermal Diffusivity, mm2/s 2.2
58
Thermal Shock Resistance, points 14
11 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.2 to 93.2
Carbon (C), % 0.050 to 0.25
0
Chromium (Cr), % 27 to 30
0.060 to 0.2
Cobalt (Co), % 48 to 52
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 9.7 to 24.5
0 to 0.15
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 1.5
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.5 to 1.5
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15