MakeItFrom.com
Menu (ESC)

G-CoCr28 Cobalt vs. C34200 Brass

G-CoCr28 cobalt belongs to the cobalt alloys classification, while C34200 brass belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is G-CoCr28 cobalt and the bottom bar is C34200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
100
Elongation at Break, % 6.7
3.0 to 17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 83
40
Tensile Strength: Ultimate (UTS), MPa 560
370 to 650
Tensile Strength: Yield (Proof), MPa 260
150 to 420

Thermal Properties

Latent Heat of Fusion, J/g 320
170
Maximum Temperature: Mechanical, °C 1200
120
Melting Completion (Liquidus), °C 1330
910
Melting Onset (Solidus), °C 1270
890
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 8.5
120
Thermal Expansion, µm/m-K 14
21

Otherwise Unclassified Properties

Base Metal Price, % relative 100
24
Density, g/cm3 8.1
8.2
Embodied Carbon, kg CO2/kg material 6.2
2.6
Embodied Energy, MJ/kg 84
45
Embodied Water, L/kg 440
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31
9.0 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110 to 870
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 19
13 to 22
Strength to Weight: Bending, points 19
14 to 20
Thermal Diffusivity, mm2/s 2.2
37
Thermal Shock Resistance, points 14
12 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.050 to 0.25
0
Chromium (Cr), % 27 to 30
0
Cobalt (Co), % 48 to 52
0
Copper (Cu), % 0
62 to 65
Iron (Fe), % 9.7 to 24.5
0 to 0.1
Lead (Pb), % 0
1.5 to 2.5
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 0 to 4.0
0
Niobium (Nb), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.5 to 1.5
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
32 to 36.5
Residuals, % 0
0 to 0.4